研究論文

Research Article

J. JFS, Vol. 81, No. 11 (2009) pp. 521~528

CMAによる球状黒鉛中のマグネシウム ハロー位置の特定

糸藤春喜* 山田 肇**

Determination of Magnesium-Halo Site in Spheroidal Graphite Nodules Using CMA

Haruki Itofuji* and Hajime Yamada**

A detailed study of magnesium distribution in the microstructure of spheroidal graphite iron was conducted using a Computer-aided Micro Analyzer(CMA). The results showed that magnesium segregated in a halolike form at the site between the eutectic graphite core and secondary graphite ring in graphite nodules. The graphite ring was in the form of a three-dimensional graphite shell. The halo-like distribution was concluded to be the trace of a magnesium gas bubble. In this study, the Site Theory has been used as one means of interpreting data. According to the Site Theory, a magnesium gas bubble in liquid iron functions as the site for the nucleation and growth of spheroidal graphite.

Keywords : Magnesium, SEM, CMA, Graphite Spheroidization, Site Theory

1. 緒言

球状黒鉛鋳鉄の黒鉛組織に対して実施した以前の CMA 分析^{1.3)}では, Mg ハローが黒鉛粒の周囲に存在することが 判明した. その Mg ハローは, 金属 Mg で構成されていた. 同位置への P, S, O, N, Ce 等の偏析は, 検出されていない. ここでは, この金属 Mg をフリー Mg と定義する. フリー Mg と黒鉛球状化率との間には, 良い相関があることを既 に実証している²⁾.

しかし,以前の CMA 分析では,Mg ハロー存在の実証 を主目的に,分析条件を設定した.このため,Mg ハロー の詳細位置を,特定するまでに至っていない.その要因は, 球状黒鉛粒径に対して電子ビーム径が大きかったこと,及 び分析視野を低倍率にしたことにある(Table 1).Mg ハ

Table 1	Conditions	of	CMA	analysis	on	magnesium

Items	Conventional study ^{1,3)}	This study		
Type of CMA	JEOL-8600M	JEOL-8600M	Shimazu-8705	
Accelerating voltage (KV)	15	15	15	
Probe current (nA)	301	300	30	
Beam diameter (μ m)	2	1	1	
Analysis region/Beam ¹¹⁾ (μ m	φ3 X Depth 1	φ2 X Depth 1	φ2 X Depth 1	
Scanning (µ m)	2 (Stage) 1 (Stage)		1 (Stage)	
Points (X,Y)	500 X 450	450 X 450	512 X 512	
Magnification	X100	X400	X400	
Dwelling time (m-sec.)	20	100	100	
Method	WDS	WDS	WDS	
Standard specimen	Pure Mg	MgO	Pure Mg	
Spectrum crystal	TAP	TAP	TAP	
Surface preparation	Diamond polish (etch)	Diamond polish (no etch)	GD spattering	

ロー位置を予想するに当たり,凝固中及び凝固後のオース テナイトへの Mg 溶解度が殆どないこと,及び析出黒鉛の 生成挙動を考慮した.その結果,Mg ハローは,球状黒鉛 の芯である共晶黒鉛粒と殻である析出黒鉛リングとの間に 存在することが予想された^{3~5)}.以下,各々の黒鉛は,一 次黒鉛及び二次黒鉛と記述する.

この CMA 分析では、分析倍率をこれまでより高くして、 黒鉛粒に対する詳細な $Mg \cap n - dc$ 置の特定を目的とした。 得られた結果は、サイト説^{1~10)}の観点より考察する こととする.

2. 実験方法

CMA 分析用の試験片は, Mg で球状化処理された肉 厚 150mm の鋳放し供試材より採取した 15×15×10mm ブ ロックを用いた.この試験片は,以前の分析に用いたもの と同一である^{13~5)}.その試験片の化学成分を **Table 2** に 示す.分析結果への研磨の影響をチェックするため,二つ の異なる分析表面状態を用意し,CMA 分析した.一つは, ダイヤモンドペーストによる研磨面である.他方は,直接 表面に触ることのないグロー放電法によるミリング加工面

Table 2 Chemical composition of specimen for CMA analysis.

Chemical composition (mass %)							
С	Si	Mn	Р	S	Ce	Mg	CE
3.53	2.31	0.27	0.037	0.010	0.016	0.051	4.30
CE=C+1/3Si							

- * 株式会社宇部スチール Ub
- ** 元,株式会社宇部スチール

Ube Steel Co., Ltd

Former address Ube Steel Co., Ltd

521

平成21年3月30日 原稿受理

Items	For CMA	For SEM
Mask diameter (ϕ mm)	5	5
Insulator (ϕ mm)	5+20	5+20
Voltage (KV)	0.7	0.7
Current (mA)	1	1
Time (Min.)	50	140
Milling Depth (μ m)	≒2	≒7
Atmosphere	Ar	Ar

Table 3 Conditions of glow discharge spattering by GD/MS.

である.

今回の二度の分析では、機種やオペレータの分析条件設定の差もみるため、各々別の機関の異なる機種の CMA を使用した.分析視野は、ミリング加工により少し表層を加工除去したものの、二度共に全く同じ領域とした.電子ビーム径は、黒鉛粒における Mg ハロー位置を明確に検出するため、以前の分析^{1,3~5)}より小さい1µm とした.分析倍率は、以前より高い約 400 倍にした. CMA 分析及びグロー放電条件をそれぞれ Table 1 及び Table 3 に示す.

3. 実験結果

CMA 分析は,先ず,ダイヤモンドペースト研磨面から 実施した.分析面のミクロ組織を Fig. 1 に示す. Fig. la に示すミクロ組織は,腐食液の影響を避けるため,分析後 に 3% ナイタールで腐食したものである.分析視野は,中 央の腐食されていない領域に相当する.分析視野は,小 中にカーボン蒸着されるために,一様に腐食されていない. 従って,電子照射の位置安定性が極めて良好であったと言 える.ミクロ組織は,フェライト基地,黒鉛粒,ボイド, 介在物より構成されている.黒鉛は,Fig. la 及びb共に 黒色を呈している.一方ボイド及び介在物は,Fig. la で は黒色,Fig. lb では白色を呈している。 CMA 分析結果を Fig. 2 に示す. Mg ハローは, 殆どの 黒鉛粒において, 表面より少し内側の層で検出された (Fig. 2a). 周囲との濃度差が少なく, 配色による Mg ハローの 明示が困難であったため, Mg と Fe のマップを合成した (Fig. 2c). 合成データは、特性 X 線の強度レベルではなく, 特性 X 線強度に仕切り値を与えて各元素の検出有無であ らわした. Fe 濃度が高い部分は緑色, Mg 濃度が高い部分 は赤色, 両者が共に高い部分は黄色, 両者が共に低い部分 は黒色で識別した. 黒色部分は, 球状黒鉛である. その結果, Mg ハローは, 球状黒鉛の外周縁より少し内側に位置する ことが明瞭となった. 以後, Mg 分布の記述は, Fig. 2c を 中心に展開する. いくつかの黒鉛粒には, その中心領域に Mg が偏析していた. しかし, そのような黒鉛粒にも Mg ハローが検出された.

黒鉛の中には, Mg ハローが検出されないものがあった (Fig. 1 の矢印①). このような黒鉛は, Mg ハローより外 側の黒鉛に相当する可能性が高い⁵⁾.

分析面に凹凸がある部分,及び物質密度が大きく異なる 組織が混在する箇所では、分析ノイズが現れ、あたかも偏 析があるようなデータが得られることがある. Mg ハロー が Mg ノイズではないことを示すため、ビッカース硬度計 の圧痕を、分析面に意図的に取込んだ(Fig. la の矢印②). 電子の照射により発生する特性X線の検出器は、Fig. 1 の 上方にある. Mg は、ビッカース圧痕の上半分の凹面壁か ら偏って検出されている(Fig. 2cの左下コーナー). これが、 ノイズに相当する. しかし、Mg 分布には、方向性や検出 器に対する偏りなどなく、黒鉛粒表面の内側にリング状に 検出されている. これは、Mg が黒鉛粒に対して、間違い なくハロー状に分布することを示す結果である.

ボイド及び介在物からは, Mg が高濃度に検出された. 代表的なボイド及び介在物の SEM 写真を, Fig. 3 及び Fig. 4 に示す. ミクロ組織におけるボイドは, 通常, 凝固 時に形成される共晶セル間の巣, 或いは研磨時に黒鉛粒や

in the second s

(a) Optical photo ; (1) Graphite without Mg halo and (2) Vickers hardness mark.

100 µ m

Fig. 1 Microstructure of a hand-polished specimen analyzed by CMA. The specimen was etched with 3 vol.% nital after CMA analysis.

介在物が脱落した結果として観察される. Fig. 3 に示すボ イドは、内壁に介在物が残存していることから、介在物の 脱落跡と思われる. Fig. 4 は、Mg 介在物の事例を示す. 以 前の CMA 分析では^{1,3)}, ハロー以外に検出される黒鉛粒内 の Mg は、介在物であった. しかし、そのような黒鉛粒は 少なく、介在物 Mg は、共晶セル間に多く確認された.

(a) Mg map

(b) Fe map

(c) Fe-Mg map Fig. 2 The results of CMA analysis on the microstructure shown in Fig. 1.

グロー放電によりミリング加工した面の SEM 写真を Fig. 5 に,及びその領域の CMA 分析結果を Fig. 6 に示す. 分析領域は,ミリング加工により表面を約 2µm 除去した ものの,上述の CMA 分析とほぼ同等に出来た.

Fig. 6a に示す Mg 分析結果より, Mg ハローは, 最初の 分析結果 (Fig. 2a) と同様, 殆ど全ての黒鉛粒に検出され

(a) Mg map

(b) C map

(c) Ar map Fig. 6 The results of CMA analysis on the microstructure shown in Fig.5.

10 µ m

Fig. 5 SEM microstructure of a specimen which was used for the second CMA analysis. The analyzed area was the same as the first CMA analysis, but the surface was milled about 2μ m by the glow discharge spattering method.

た. これは、分析結果に対してダイヤモンドペースト研磨 が影響を及ぼしていないことを意味する. Fig. 6bのC分 析結果に示すように、いくつかの黒鉛粒には、その外周の 縁より少し内側に、C濃度の薄いリング(紺色)が観察さ れた. Mgハローは、C濃度の薄いリングと同じサイトに 位置していた. このリングは、一次黒鉛と二次黒鉛の界面 に相当する.

C 濃度は,黒鉛粒間で差が見られ,同一粒内にも斑が見 られる.これは、ミリング加工による分析面の凹凸の影響 が出ているためで,黒鉛粒内の凸が大きい部分のC濃度 が低く,C濃度斑も大きい.

Fig. 6a に示すように,黒鉛粒の中心付近には,Mg が検 出された.その粒数は,最初の分析結果(Fig. 2a)より多い. これらの黒鉛粒には,Mg ハローもまた検出された.

ミリング加工した黒鉛粒の拡大 SEM 写真を Fig. 7 に示 す.黒鉛粒の表面は、その中心と周辺とでは、グロー放電

(a)

Fig. 4 Inclusions at the area among eutectic cells in Fig. 1; (a) the area at right middle side and (b) the area at left upper side

法によりミリング加工される程度が異なっていた.中心領 域のミリング加工程度は、周辺域より少ない.この傾向は、 黒鉛の基本結晶構造における六方晶の基底面と柱面(プリ ズム面)との間で、ミリングされる程度に違いがあること に起因する.球状黒鉛の内部構造は、黒鉛粒の表面に対し て平行に、層状に積み重なった薄い黒鉛片で構成されてい る^{34,7)}.黒鉛片の面は、黒鉛基本構造における基底面であ る³⁾.黒鉛のミリング加工性は、基底面と柱面とで異なり、 前者の方が困難な傾向となっていた.球状黒鉛の内部構造 からすると、ミリング面には、基底面が周辺より中心領域 の方に現れ易い.その結果として、Fig.5に示されるよう に、ミリング加工により黒鉛粒の中心に突起が出来たと思 われる.

Fig. 6 b 及び c に示すように,いくつかの黒鉛粒は, Mg ハローが位置する箇所に C 濃度が薄く, Ar 濃度が高くなっ ていた.この疑問を明らかにするため,グロー放電法によ るミリング加工を,CMA 分析時より深くした.試験片は, CMA 分析に用いたものとは異なるが,同じ厚肉供試材よ り採取したものである.ダイヤモンドペースト研磨面を約 7µm ミリング加工し,その面を SEM 観察した.その黒鉛

(a) Nodule with nucleous like protuberance at center

(b) High magnification of nucleous like protuberance

Fig. 7 SEM photographs of the largest graphite nodule at the near center in Fig. 5 (tilted 30°). This nodule had a magnesium halo, but also had a magnesium containing protuberance at the center.

粒の例を Fig. 8a に示す. その結果, 黒鉛粒の外周縁から 少し内側で, C 濃度が低く Ar 濃度が高い部分に, リング 部状の隙間が観察された. 低 C 濃度は, 隙間によるもの と判明した. Ar 偏析は, グロー放電スパッタリングによ り生じたものと思われる. 結局, 球状黒鉛の表面層は, 黒 鉛殻で構成されていた. A. Javaid ら¹²⁾も同様な結果を報告 している. その結論にもあるように, 黒鉛殻は, 二次黒鉛 と思われる. 二次黒鉛殻の輪郭は, 黒鉛粒を良く研磨する と光学顕微鏡で観察できる. 二次黒鉛殻は, 単結晶ではな く, 一次黒鉛である芯の部分と同様, 薄い黒鉛片が積み 重なって構成されている.

ここでも、黒鉛粒の中心領域に突起が観察された. Fig. 8aに示す黒鉛粒の突起の上表面を、FE-SEMのEDSによ り定性分析した.その結果をFig.8bに示す.CからのX 線回折ピークが非常に高く、ミリング加工により現出の突 起部は、同物質の黒鉛と判明した.突起の上表面は、黒鉛 結晶構造の基底面となっていた.SEMにて異物が観察さ

Fig. 8 Graphite nodule with secondary graphite ring (tilted 30°); (a) SEM photograph and (b) result of EDS analysis. The hand-polish surface was milled about 7μ m by the glow discharge spattering.

れなったことから, Fe,Si,Ar のピークは, グロー放電スパッ タリングの影響と思われる.

4. 考察

4.1 気泡の痕跡としての Mg ハロー

Mg は、黒鉛球状化元素であるだけでなく、強力な脱硫 及び脱酸元素でもある.既報²⁾のように、Mg は、処理溶 湯の中に二つの形態で存在する.一つは、硫化物や酸化物 などのような介在物 Mg である.他方は、フリー Mg で、 黒鉛球状化に影響を及ぼす.フリー Mg が鋳鉄の液相に 殆ど溶解せず¹³⁾、一気圧の下、約 1,376K で気化するため、 必然的に気相となり、気泡として存在することとなる.更 に、フリー Mg は、凝固中及びその後の γ 相中にも殆ど固 溶しない.約 993K 以上では、Mg と炭素の化合物も存在 しない¹⁴⁾.以上より、もし球状黒鉛が Mg 気泡の中で生成・ 成長することが出来たなら、Mg は、球状黒鉛に気泡の痕 跡として存在するに違いないと、容易に推定出来る.この ことは、以前の CMA 分析^{1.3.4)} でMg ハローを発見したこ とで、既に実証した.

本研究では、球状黒鉛の内部構造に合わせた電子ビーム 径及び分析倍率とした.その結果、黒鉛粒内における Mg ハローの詳細な位置を、特定することが出来た.その位置 は、一次黒鉛である黒鉛粒の芯と、二次黒鉛である黒鉛殻 の間に存在した.この位置は、まさに以前の研究^{3~5)}にて 予測した通りであった.

4.2 Mg ハローの形成

Mg 気泡は, 黒鉛の晶出にとって, 溶湯中における一種 の自由表面と考えられる. 黒鉛には、本来、自由表面に 優先的に生成·成長する特性がある^{15~17)}.サイト説によれ ば、Mg気泡は、黒鉛が溶湯中に直接生成し球状黒鉛へと 成長するために、不可欠な必要条件である.黒鉛は、Mg 気泡壁から求心的に成長し、微細黒鉛球を形成する. この 段階の Mg ハローは、微細黒鉛球と溶湯との界面にガス状 に存在しているであろう. サイト説では, 以下の二つをそ の理由と考える.一つは、黒鉛の基本結晶構造にある.黒 鉛は、溶湯中で成長すると本来のa軸方向への成長が優先 され、キッシュ黒鉛へと成長する. 溶湯中に球状の形態で 晶出するには、黒鉛は、Mg 気泡のようなサイトが不可欠 である.もう一つは,気泡を構成する Mg の原子間距離が, 球状黒鉛を構成する黒鉛片の隙間より大きいと予想され る点である。凝固温度域での Mg は、約1.5 気圧の気化圧 力を伴う¹⁸⁾. Mg 蒸気を理想気体と仮定しボイル・シャル ル則より計算すると、その体積は、常温の約1,100倍にな ると推定される.その時の原子間距離は、常温の約10倍 (32Å)となる.一方,黒鉛片間の隙間は、その観察事 例³⁾及び黒鉛の基本結晶構造から推定すると、基底面間 距離(3.35Å)~数+Åと考えられる.従って, Mg 蒸気は, 黒鉛片間に存在できないことになる.

凝固が更に進むと、Mg気泡内に生成した微細黒鉛球は、 γ 殻で取囲まれる. γ 殻中の微細黒鉛球は、一次黒鉛とし て球状で成長を完了するには、残液から隔離されていなけ ればならない^{3.6)}.これは、微細黒鉛球に面する γ 殻の内 壁が球形でなければならないことを意味している. γ 殻内 の球形壁は、微細黒鉛球にとって、球状に成長するための 十分条件となる.凝固終了段階で、ガス状 Mg ハローは、 一次黒鉛とγとの界面に存在すると思われる. Mg気泡は、 約 1,373K で液化してガス圧を失うと共に、体積を減少す る. その結果、そこには真空の空間が生まれる.

最終 Mg ハローの位置は、二次黒鉛の生成・成長次第と なる.二次黒鉛は、 γ 基地組織の内壁で生成し、真空ス ペースの内側へと成長する.もし真空スペースが充分な体 積を持たないと、二次黒鉛は、Fe 原子の拡散を伴って外 側へと成長することとなる.Mg ハローは、どちらにして も、一次黒鉛球と二次黒鉛殻とで挟まれた状態となるであ ろう.本研究結果によると、一次黒鉛と二次黒鉛の間には、 隙間がある.二次黒鉛の成長は、後者の挙動が優勢となっ ていると思われる.

4.3 サイト説による諸現象の理解

サイト説の立場から考えると、以下の現象を容易に理解 することが出来る.

1) 黒鉛は、溶湯中に直接晶出すると、キッシュ黒鉛へと

成長する^{3.6)}. しかし, Mg 処理溶湯における黒鉛は, 球状黒鉛を形成出来る. これは, 溶湯中に Mg 気泡が 存在し, そこに黒鉛が晶出するからである.

- 2) 粒数は多くは望めないが、球状黒鉛は、S, Se, Te, Bi, Pb, N₂ 及びArの添加によっても得ることが出来る^{15,16)}. これらの元素は、溶湯中にあって気体であることが出 来,短時間ながら気泡として存在することが出来るた めである。
- 3) 球状のボイドは、特殊焼戻し熱処理により、固相でも 導入することが出来る.可鍛鋳鉄では、このことを利 用して、析出黒鉛として球状黒鉛を形成させることが 出来る^{16,17)}.片状黒鉛であっても、その黒鉛端に接す る基地組織を特殊熱処理により丸みをつければ、黒鉛 端を丸くすることが出来る¹⁹.
- 4) セラミックフォーム・フィルタは、介在物を捕捉する ッールとしてよく知られている.フィルタは、マクロ 介在物を機械的に捕捉するだけでなく、ミクロ介在物 をも表面に析出させて除去する効果がある.しかし、 黒鉛球状化率を悪化させることはない²⁰⁾.これは、介 在物 Mg ではなく、フリー Mg が黒鉛球状化に寄与す るためである²⁾.
- 5) Mg 処理した溶湯としない溶湯を,二つの異なる湯口 から一つの鋳型に同時に鋳込んだ場合,二つの溶湯は 鋳型内で分離し,常に前者(Mg 含有溶湯)が上層に 位置することとなる²¹⁾.これは、Mg 気泡を含む溶湯 の密度が,含まないもののそれより小さいためであ る.

結局,球状黒鉛形成への Mg の役割は,以下のように説明出来る.Mg ハローは,フリー Mg として存在し,Mg 気泡の痕跡であると考えられる.Mg 気泡は,球状黒鉛の 生成・成長に対してサイトを提供し,黒鉛球状化に間接的 に寄与しているのである.製造工程における溶湯処理~ 鋳込み~凝固終了温度は,一般的には約1,770~1,420K の 範囲である.Mg の気化温度が約1,373K であることから, Mg は,鋳鉄溶湯を取扱う間,比較的安定した気体として 存在出来ることとなる.このように Mg は,鋳鉄溶湯に対 する物理的性質の適合性から,球状黒鉛形成のための最良 元素となっている.

4.4 サイト説の課題

MgやCe系介在物と溶湯との界面は,黒鉛生成サイト として考えられる.しかし,それが球状黒鉛生成の必要条 件とするには,もう少し研究を要する.粒内に介在物を有 する球状黒鉛にも,Mgハローが存在するからである.又, Ceを始めとする希土類元素を含ませない球状化剤²²⁾を開 発し,厚肉球状黒鉛鋳鉄の製造に使用しているが,供試材 及び実体共に,球状化率は良好である.

Mg ハローの正確な位置を特定出来たことは、サイト説 をまた一歩前進させた。サイト説は、今後、球状黒鉛生 成・成長過程における Mg ハローの形成過程を実証出来た なら、更なる前進が期待されよう.

結論

- 1. 本研究では,詳細な CMA 分析により,球状黒鉛に おける Mg ハローの位置を特定出来た.
- 2. Mgハローは, 殆どの黒鉛粒において, 球状黒鉛の 芯となる一次黒鉛と殻となる二次黒鉛の間に位置し ていた.
- 3. Mgは、いくつかの黒鉛粒の中心近傍に検出された. しかし、そのような黒鉛粒にも、Mgハローが検出 された.
- Mg ハローは、サイト説からすると、Mg 気泡の痕跡 で あると考えられる。Mg 気泡は、球状黒鉛生成・ 成長に必要なサイトである。

謝辞

この論文を執筆するに当たり,ご協力頂いたキャストファブ・テクノロジー社(米国)のMark Fields 氏及び元, (株)宇部スチールの高野千晶氏に,心より感謝致します.

参考文献

- H. Itofuji; Cast Metals, 5 (1992) 1,6.
 糸藤春喜;鋳造工学, 67 (1995) 767.
- H. Itofuji; Int. J. Cast Metals, 12 (1999) 179.
 糸藤春喜;鋳造工学, 72 (2000) 645.
- 3) H. Itofuji; 京都大学学位論文(1993).
- 4) H. Itofuji; AFS Trans., 104 (1996) 79.
- 5) H. Itofuji; Cast Metals, 5 (1993) 4, 235.
- H. Itofuji, Y. Kawano, N. Inoyama, S. Yamamoto, B. Chang and T. Nishi; AFS Trans., 91 (1983) 831.
- H. Itofuji, Y. Kawano, S. Yamamoto, N. Inoyama, H. Yoshida and B. Chang; AFS Trans., 91 (1983) 313.
- H. Itofuji, K. Kawamura, N. Hashimoto and H. Yamada; AFS Trans., 98 (1990) 585.
- 9) H. Itofuji and H. Uchikawa; AFS Trans., 98 (1990) 429.
- H. Itofuji; Keith D. Millis World Symposium on Ductile Iron, USA (1993).

Items	Important factors and examples	Notes		
	MMorphology of Mg in spheroidal graphite iron (SGI)	①Free and Inclusive Mg		
Comprehension by researcher	②Distribution of Mg in microstructure	②Mg halo in graphite nodules		
	③Action of electron in specimen	③Diffusion range = souse of special X-ray		
	MMutual understanding between operator and researcher	(4) Meeting shall be held before analysis.		
	(5)Witness of analysis	(5)Analysis shall be conducted by third party.		
	①Content and morphology of Mg in SGI	1		
	②Distribution of Mg existed in microstructure	2		
by operator	③Both operation and analytical mechanism of CMA	3Beam focus shall not move but be stable during analysis.		
-, -, -, -, -, -, -, -, -, -, -, -, -, -	④Hard ware of CMA.	④Operator shall be able to maintain CMA by own hands.		
	⑤Soft ware of CMA.	⑤Operator shall not have reliability on full-auto function.		
	©JEOL JXA8600M、JXA8800			
CMA	OSHIMAZU EPMA-8705	Information up to 90s		
	× CAMECA (Australian foundry)			
Current(nA)	300 for JEOL	Shall be stable for both power source and CMA itself		
ourrent (IIA)	30 for SHIMAZU	during analysis.		
	15	Shall be selected considering electron action in graphite		
Voltage (KV)	15	nodules.		
Beam diameter (11 m)	01~50	Shall be decided considering electron action in analysis		
	0.1 0.0	structure.		
Scanning	Stage			
Elements(X , Y)	Beam diameter X Scanning number =analysis view area	Good matching shall be needed among three factors.		
Time/element(m-sec.)	50~100	Shall be selected for every CMA.		
Method	WDS ; Wave Dispersive Spectorography			
Standard specimen	Pure Mg or MgO	Must be used.		
Spectrum crystal	Shall be suitable for special X-ray of Mg.	For example ; TAP		
Surface preparation	①Polishing ;Diamond paste	①Radial pattern shall be seen in graphite nodule.		
	②Etching ; No influence	②Stain and impurity shall not be allowed on surface.		
	③Coating ; No need	*Specimen shall not have magnetism.		
Analysis view area	Shall be general microstructure for success	Wider view and general microstructure which have many		
	Shall be general microstructure for everyone.	graphite nodules shall be selected.		
Special X-ray strength	Whole range detected shall be treated as data. Especially,	Conventional EPMA had no function to treat weaker side		
	weaker side of strength is important.	of strength.		
Display	Coloring at Mg halo shall be nut avievity	Mg halo will not appear clearly if wide range of strength		
Display	ooloring at wig halo shall be put priority.	including stronger side was considered		

Annex Detective condition of Mg halo by using CMA

- R. Castaing; Advance in Electronics and Electron Physics, 13 (1960) 317.
- 12) A. Javaid and C. R. Loper, Jr.; AFS Trans., 98 (1990) 597.
- T. B. Massalski; Binary Alloy Phase Diagrams (1992) 1722.
- T. B. Massalski; Binary Alloy Phase Diagrams (1992) 859.
- S. Yamamoto, B. Chang, Y. Kawano, R. Ozaki and Y. Murakami; AFS Trans., 83 (1975) 217.
- 16) 張博,明智清明,塙健三;球状黒鉛鋳鉄,アグネ(1983) P117.
- 17) 李鏞河;京都大学学位論文(1986).
- 18) H. Itofuji;Int. J. Cast Metals Research, 17 (2004) 220.
- 19) Y. Kawano and T. Sawamoto; AFS Trans., 88 (1980) 463.
- 20) P. R. Khan, W. M. Su, H. S. Kim, J. W. Kang and J. F. Wallace; Giessereiforschung, 40 (1988) 3, 101.
- 21) T. Ohide; Int. J. of Cast Metals Res., 9 (1997) 279.
- 22) 糸藤春喜, 桝谷歩; 特許第 3475607 号 (1995).